in situ hybridization


Whole-mount in situ hybridization for the detection of RNA in C. elegans embryos

Geraldine Seydoux and Andrew Fire Adapted from Seydoux, G. and Fire, A. (1995). Whole-mount in situ hybridization for the detection of RNA in C. elegans embryos. In C. elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology (ed. H. Epstein and D. Shakes) Academic Press, San Diego.



Overview.
A mixed population of C. elegans embryos is attached to microscope slides, permeabilized by freezing and fixed with methanol and formaldehyde. Embryos are then incubated overnight with a digoxigenin-labelled single-stranded DNA probe, followed by extensive washes to remove excess probe. Fluorescent or enzyme-linked anti-digoxigenin antibodies are used to visualize the hybridized probe. The entire procedure requires approximately 1.5 days from harvest of embryos to probe visualization. This protocol is designed for embryos, but can also be used for larvae/adults. Best results have been obtained when looking at RNAs expressed in the adult germline, but some somatic RNAs have also given nice patterns.


Generality of the technique
We have used this protocol to analyse the expression pattern of 21 genes expressed during embryogenesis (Seydoux and Fire, 1994). We find that the protocol allows the visualization of RNA in well-preserved embryos from the one-cell stage to the pretzel stage (see Fig. 1). In general, RNAs are detected in the cytoplasm of cells, with the exception of embryonically transcribed RNAs which can sometimes be detected in nuclei when they are first transcribed in early blastomeres. Low abundance RNAs expressed after the lima bean-stage can be difficult to detect; proteinase K digestion of embryos prior to hybridization can be helpful in such cases (Pete Okkema, pers. comm.). Although the protocol was developed to detect RNAs in embryos, preliminary results suggest that it is also be applicable for detecting RNAs in larvae and adults (G. S. and A. F., unpublished data).


lacZ fusion RNAs
Because of their great abundance, RNAs derived from chromosomally integrated lacZ fusions are an excellent target for in situ hybridization. When first transcribed, these RNAs accumulate in two nuclear foci, which may correspond to the sites of transcription on the two homologous chromosomes that carry the array (Seydoux and Fire, 1994). The appearance of these "double dots" can help determine the earliest onset of transcription for a gene of interest. Double dots can occasionally also be seen for endogenous RNAs, but are in general more difficult to detect. In contrast to endogenous RNAs that quickly accumulate in the cytoplasm after their initial appearance in the nucleus, lacZ fusion RNAs remain predominantly nuclear and appear quite labile until the 26-cell stage (Seydoux and Fire, 1994). After that stage, lacZ fusion RNAs accumulate in the cytoplasm and become more stable, often perduring longer than endogenous RNAs. This behavior of lacZ fusion RNAs may be due to the long, intron-less coding region of the lacZ gene.


Background vs authentic staining.
A common problem associated with the protocol presented here is the high incidence of non specific sticking of the probe to embryos. Often, up to 50% of all wells in an experiment exhibit some form of non-specific staining. This problem may be due to variability in the permeabilization of embryos introduced during the freeze-cracking step. Fortunately, this non-specific staining is easily distinguished from authentic staining. Non-specific staining usually appears within 10 minutes in the color reaction as dark purple patches on the surface of embryos or in nuclei. The best way to distinguish authentic staining from non-specific staining is to compare staining patterns obtained from both antisense and sense probes. Any staining common to both probes is likely to be due to non-specific background. In our experience, successful hybridization with sense probes yields embryos with no staining at all.